365bet体育备用网址-365体育官方中文版

365bet体育备用网址

欢迎来到365bet体育备用网址官方网站!

浏览量:
产品名称:

Maleimide PEG Amine, TFA Salt

产品代号:
MAL-PEG5000-NH2TFA
产品纯度:
≥ 95%
分子量:
2000 Da,3500 Da, 5000 Da, 7500 Da等
产品编号:
A5007
没有此类产品
产品描述

  (365bet体育备用网址)提供高品质TFA盐马来酰亚胺PEG胺,产品代替率≥95%。

  (365bet体育备用网址)出产的异双功能马来酰亚胺PEG胺产品通常用作两种不同化学物质的交联剂或间隔物。此异功能PEG衍生物中的PEG部分可提供水溶性、生物相容性及柔性。此产品专门应用于抗体偶联药物(ADC’s)的开发。

  (365bet体育备用网址)提供MAL-PEG-NH2TFA分子量2000 Da,3500 Da, 5000 Da, 7500 Da的产品1克和5克包装。

  (365bet体育备用网址)提供分装服务,需要收取分装费用,如果您需要分装为其他规格请与我们联系。

  (365bet体育备用网址)同时提供其他分子量的MAL-PEG-NH2TFA衍生物产品,如你需要请与我司sales@jenkem.com联系。

  (365bet体育备用网址)提供大批量出产产品及GMP级别产品,如需报价请与我们联系。

References:

1. Huang, Z.G., et al., RGD-modified PEGylated paclitaxel nanocrystals with enhanced stability and tumor-targeting capability, International journal of pharmaceutics, 2019, 556:217-25.

2. Khondee, S., et al., Doxorubicin-Loaded Micelle Targeting MUC1: A Potential Therapeutic for MUC1 Triple Negative Breast Cancer Treatment, Current drug delivery, 2018, 15(3), pp.406-416.

3. Yu, X., et al., Activatable Protein Nanoparticles for Targeted Delivery of Therapeutic Peptides, Advanced Materials, 2018.

4. Wu, X., et al., A Cascade‐Targeting Nanocapsule for Enhanced Photothermal Tumor Therapy with Aid of Autophagy Inhibition, Advanced healthcare materials, 2018, p.1800121.

5. Li, H., et al., Lactoferrin functionalized PEG-PLGA nanoparticles of shikonin for brain targeting therapy of glioma, International Journal of Biological Macromolecules, 2018, V. 107A, P. 204-211.

6. Jiang, Y., et al., TEMPO-oxidized starch nanoassemblies of negligible toxicity compared with polyacrylic acids for high performance anti-cancer therapy, International Journal of Pharmaceutics, 2018, V. 547 (1–2), p. 520-529.

7. Chen, G., et al., NIR-induced spatiotemporally controlled gene silencing by upconversion nanoparticle-based siRNA nanocarrier, Journal of Controlled Release, 2018, V. 282, P. 148-155.

8. Yang, J., et al., A positron emission tomography image-guidable unimolecular micelle nanoplatform for cancer theranostic applications, Acta Biomaterialia, 2018, V. 79, P. 306-316.

9. Verbeke, C. S., et al., Multicomponent Injectable Hydrogels for Antigen-Specific Tolerogenic Immune Modulation, Adv. Healthcare Mater., 2017, 6.

10. Peng, H.B., et al., Nuclear-Targeted Multifunctional Magnetic Nanoparticles for Photothermal Therapy, Adv. Healthcare Mater., 2017, 6 (7).

11. Clawson, G.A., et al., A Cholecystokinin B Receptor-Specific DNA Aptamer for Targeting Pancreatic Ductal Adenocarcinoma, Nucleic acid therapeutics, 2017, 27(1):23-35.

12. Chen, G., et al., Tumor-targeted pH/redox dual-sensitive unimolecular nanoparticles for efficient siRNA delivery. Journal of Controlled Release, 2017.

13. Wang, Y., et al., Carboplatin‐Complexed and cRGD‐Conjugated Unimolecular Nanoparticles for Targeted Ovarian Cancer Therapy, Macromolecular bioscience, 2017, 17(5).

14. Chai, Z., et al., A facile approach to functionalizing cell membrane-coated nanoparticles with neurotoxin-derived peptide for brain-targeted drug delivery, Journal of Controlled Release, 2017, V. 264, P. 102-111.

15. Zhao, L., et al., Computational design of peptide-Au cluster probe for sensitive detection of α IIb β 3 integrin, Nanoscale, 2016, 8(7):4203-8.

16. Xue, Y., et al., Preventing diet-induced obesity in mice by adipose tissue transformation and angiogenesis using targeted nanoparticles. Proceedings of the National Academy of Sciences, 2016.

17. Ding, H., et al, HER2-positive breast cancer targeting and treatment by a peptide-conjugated mini nanodrug, Nanomedicine: Nanotechnology, Biology and Medicine, 2016.

18. Li, L., et al., Multifunctional “core-shell” nanoparticles-based gene delivery for treatment of aggressive melanoma, Biomaterials, 2016, V. 111, p. 124-137

19. Song, H., et al., Acid-responsive PEGylated doxorubicin prodrug nanoparticles for neuropilin-1 receptor-mediated targeted drug delivery, Colloids and Surfaces B: Biointerfaces, 2015, V. 136, P. 365-374.

20. Shirbin, S,J., et al., Cisplatin-Induced Formation of Biocompatible and Biodegradable Polypeptide-Based Vesicles for Targeted Anticancer Drug Delivery, Biomacromolecules, 2015, 16 (8), 2463-2474.

21. Liang, D.S., et al., Tumor-specific penetrating peptides-functionalized hyaluronic acid-d-α-tocopheryl succinate based nanoparticles for multi-task delivery to invasive cancers, Biomaterials, 2015, V. 71, P. 11-23.

22. Vasconcelos, A., et al., Conjugation of cell-penetrating peptides with poly(lactic-co-glycolic acid)-polyethylene glycol nanoparticles improves ocular drug delivery, Int J Nanomedicine, 2015, 10: 609–631.

23. Jian, W.-H., et al.,  Indocyanine Green-Encapsulated Hybrid Polymeric Nanomicelles for Photothermal Cancer Therapy, Langmuir, 2015, 31 (22), 6202-6210.

24. Temme, S., et al., Noninvasive Imaging of Early Venous Thrombosis by 19F Magnetic Resonance Imaging With Targeted Perfluorocarbon Nanoemulsions, 2015, 131: 1405-1414.

25. Na, Y., et al., Potent antitumor effect of neurotensin receptor-targeted oncolytic adenovirus co-expressing decorin and Wnt antagonist in an orthotopic pancreatic tumor model, Journal of Controlled Release, 2015, V. 220 B, P. 766-782.

26. Bai, M.-Y. and S.-Z. Liu, A simple and general method for preparing antibody-PEG-PLGA sub-micron particles using electrospray technique: An in vitro study of targeted delivery of cisplatin to ovarian cancer cells. Colloids and Surfaces B: Biointerfaces, 2014, p: 346-353.

27. Shin, M.C., et al., Combination of antibody targeting and PTD-mediated intracellular toxin delivery for colorectal cancer therapy, Journal of Controlled Release, 194, 2014, p: 197-210.

28. Joachimiak, L.A., et al., The Structural Basis of Substrate Recognition by the Eukaryotic Chaperonin TRiC/CCT, Cell, 2014, 159(5), p: 1042-1055

29. Huang, Y.-F., et al., pH-Responsive Hierarchical Transformation of Charged Lipid Assemblies within Polyelectrolyte Gel Layers with Applications for Controlled Drug Release and MR Imaging Contrast, J. Mater. Chem. B, 2014, 2, 4988-4992.

30. Liu, Y., et al., A Bacteria Deriving Peptide Modified Dendrigraft Poly-l-lysines (DGL) Self-Assembling Nanoplatform for Targeted Gene Delivery, Molecular Pharmaceutics, 2014, 11 (10), 3330-3341.

31. Yang, Z., et al., Multifunctional non-viral gene vectors with enhanced stability, improved cellular and nuclear uptake capability, and increased transfection efficiency, Nanoscale, 2014, 6, 10193-10206.

32. Tao, C., et al., Development and characterization of GRGDSPC-modified poly(lactide-co-glycolide acid) porous microspheres incorporated with protein-loaded chitosan microspheres for bone tissue engineering, Colloids and Surfaces B: Biointerfaces, 2014, V. 122, P. 439-446.

33. Qin, Y., et al., Liposomes formulated with fMLP-modified cholesterol for enhancing drug concentration at inflammatory sites, Journal of Drug Targeting, 2014, V. 22:2.

34. Chiang W.H., et al.,  Functionalized polymersomes with outlayered polyelectrolyte gels for potential tumor-targeted delivery of multimodal therapies and MR imaging, J Control Release, 2013, 168(3):280-8.

35. Huang, Q., et al., PEG as a spacer arm markedly increases the immunogenicity of meningococcal group Y polysaccharide conjugate vaccine, Journal of Controlled Release, 2013, 172(1):382-9.

36. Gao, X., et al., Up-regulating blood brain barrier permeability of nanoparticles via multivalent effect, Pharmaceutical research, 2013, 30.10 : 2538-2548.

37. Lei, Y., et al. Glutathione-sensitive RGD-poly(ethylene glycol)-SS-polyethylenimine for intracranial glioblastoma targeted gene delivery. J. Gene Med., 2013, 15: 291–305.

38. Wagh, A., et al., Polymeric nanoparticles with sequential and multiple FRET cascade mechanisms for multicolor and multiplexed imaging, Small, 2013, 9.12 : 2129-2139.

39. Wagh, A., Development of Biocompatible Polymeric Nanoparticles for in Vivo NIR and FRET Imaging, Bioconjugate Chem., 2012, 23(5), pp 981–992.

40. Xiao, Y., et al., Multifunctional unimolecular micelles for cancer-targeted drug delivery and positron emission tomography imaging, Biomaterials, 2012, 33(11), p: 3071-3082.

41. Amphiphilic block copolymer; Positron emission tomography (PET); Cclic arginine-glycine-aspartic acid (cRGD) peptide. Pi-Ping Lv, et al., Targeted Delivery of Insoluble Cargo (Paclitaxel) by PEGylated Chitosan Nanoparticles Grafted with Arg-Gly-Asp (RGD), Mol. Pharmaceutics, 2012, 9(6) p: 1736–1747.

42. Alibeik, S., et al., Modification of Polyurethane with Polyethylene Glycol–Corn Trypsin Inhibitor for Inhibition of Factor Xlla in Blood Contact, Journal of Biomaterials Science, Polymer Edition, 2012, 23:15, 1981-1993.

43. Milane, L., et al., Development of EGFR-Targeted Polymer Blend Nanocarriers for Combination Paclitaxel/Lonidamine Delivery To Treat Multi-Drug Resistance in Human Breast and Ovarian Tumor Cells, Molecular Pharmaceutics, 2011, 8 (1), 185-203.

44. Qin, Y., et al., Liposome formulated with TAT-modified cholesterol for enhancing the brain delivery, International Journal of Pharmaceutics, 2011, 419(1–2), p:85-95.

45. Milane, L., et al., Therapeutic Efficacy and Safety of Paclitaxel/Lonidamine Loaded EGFR-Targeted Nanoparticles for the Treatment of Multi-Drug Resistant Cancer, PLoS ONE, 2011, 6(9), p. e24075.

46. Alibeik, S., et al., Surface modification with polyethylene glycol–corn trypsin inhibitor conjugate to inhibit the contact factor pathway on blood-contacting surfaces, Acta Biomaterialia, 2011, V. 7, Iss. 12, P. 4177-4186.

47. Milane, L., et al., Pharmacokinetics and biodistribution of lonidamine/paclitaxel loaded, EGFR-targeted nanoparticles in an orthotopic animal model of multi-drug resistant breast cancer, Nanomedicine: Nanotechnology, Biology and Medicine, 2011, V. 7:4, P. 435-444.

48. Milane, L., et al., Biodistribution and Pharmacokinetic Analysis of Combination Lonidamine and Paclitaxel Delivery in an Orthotopic Animal Model of Multi-drug Resistant Breast Cancer Using EGFR-Targeted Polymeric Nanoparticles, Nanomedicine?: nanotechnology, biology, and medicine, 2011, 7(4):435-444.

49. Guopei Luo, G., et al., LyP-1-conjugated nanoparticles for targeting drug delivery to lymphatic metastatic tumors, International Journal of Pharmaceutics, 2010, 385(1–2), p: 150-156.

50. Yang, X., et al., Multifunctional stable and pH-responsive polymer vesicles formed by heterofunctional triblock copolymer for targeted anticancer drug delivery and ultrasensitive MR imaging, ACS Nano, 2010, 4(11):6805-17.

51. Yang, X., et al., Multifunctional SPIO/DOX-loaded wormlike polymer vesicles for cancer therapy and MR imaging, Biomaterials, 2010, V. 31:34, P. 9065-9073.

52、Yang, S., et al., Virus-esque nucleus-targeting nanoparticles deliver trojan plasmid for release of anti-tumor shuttle protein, Journal of Controlled Release, 2020, V. 320, P. 253-264.

53. Huo, T., et al., Versatile hollow COF nanospheres via manipulating transferrin corona for precise glioma-targeted drug delivery, Biomaterials, 2020, 260, 120305.

 

未找到相应参数组,请于后台属性模板中添加
暂未实现,敬请等候
暂未实现,敬请等候
上一篇
下一篇

365bet体育备用网址|365体育官方中文版

XML 地图 | Sitemap 地图