PEG (Amine)2, HCl Salt

≥ 95%
2000 Da,3500 Da, 5000 Da, 7500 Da等



  (365bet体育备用网址)提供HClNH2-PEG-NH2HCl分子量2000 Da,3500 Da, 5000 Da, 7500 Da的产品1克和5克包装。





  1. Zhang, T., et al., Magnetic/pH dual-responsive nanocomposites loading doxorubicin hydrochloride for cancer therapy, Micro & Nano Letters, 2019.
  2. Goh, S.C., et al., Polydopamine-polyethylene glycol-albumin antifouling coatings on multiple substrates: variations, Journal of Materials Chemistry B, 2018.
  3. Kushwah, V., at al., Improved antitumor efficacy and reduced toxicity of docetaxel using anacardic acid functionalized stealth liposomes, Colloids and Surfaces B: Biointerfaces, 2018, V. 172, P. 213-223.
  4. Meng, Y., et al., Aminopeptidase N (CD13) targeted MR and NIRF dual-modal imaging of ovarian tumor xenograft, Materials Science and Engineering: C, 2018, V. 93, P. 968-974.
  5. Goor, O., et al., Introduction of anti-fouling coatings at the surface of supramolecular elastomeric materials via post-modification of reactive supramolecular additives, Polymer Chemistry, 2017.
  6. Goh, S.C.M, Universal Aqueous-Based Antifouling Coatings For Multi-Material Devices, McMaster University, 2017.
  7. Chen, X., et al., PLGA-PEG-PLGA triblock copolymeric micelles as oral drug delivery system: In vitro drug release and in vivo pharmacokinetics assessment, Journal of Colloid and Interface Science, 2017, V. 490, P. 542-552.
  8. Mou, J., et al., A New Green Titania with Enhanced NIR Absorption for Mitochondria-Targeted Cancer Therapy, Theranostics, 2017, 7(6):1531-1542.
  9. Kim, H.C., et al., Highly stable and reduction responsive micelles from a novel polymeric surfactant with a repeating disulfide-based gemini structure for efficient drug delivery, Polymer, 2017.
  10. Bai, J., et al., Triple-Modal Imaging of Magnetically-Targeted Nanocapsules in Solid Tumours In Vivo, Theranostics, 2016, 6(3):342-356.
  11. Jain, S., et al., Estradiol functionalized multi-walled carbon nanotubes as renovated strategy for efficient gene delivery, RSC Advances, 2016, 6(13):10792-801
  12. Mehdizadeh, M., et al., Biotin decorated PLGA nanoparticles containing SN-38 designed for cancer therapy. Artificial cells, nanomedicine, and biotechnology, 2016, 1-0.
  13. Bai, J., et al., Real-time monitoring of magnetic drug targeting using fibered confocal fluorescence microscopy, Journal of Controlled Release, 2016.
  14. Kippstein, R., et al., Passively Targeted Curcumin-Loaded PEGylated PLGA Nanocapsules for Colon Cancer Therapy In Vivo, Small, 2015, 11: 4704–4722.
  15. Jain, S., et al., Enhanced Antitumor Efficacy and Reduced Toxicity of Docetaxel Loaded Estradiol Functionalized Stealth Polymeric Nanoparticles, Mol. Pharmaceutics, 2015, 12 (11), pp 3871–3884.
  16. Chen, N., et al., Cy5.5 conjugated MnO nanoparticles for magnetic resonance/near-infrared fluorescence dual-modal imaging of brain gliomas, Journal of Colloid and Interface Science, 2015, 457, P. 27-34.
  17. Liu, S., et al., Meter-long multiblock copolymer microfibers via interfacial bioorthogonal polymerization, Adv. Mater., 2015.
  18. Zhang, T., et al., Targeted nanodiamonds as phenotype-specific photoacoustic contrast agents for breast cancer, Nanomedicine, 2015, 10:4 , P. 573-587.
  19. Cheng, L., et al., Construction and evaluation of PAMAM–DOX conjugates with superior tumor recognition and intracellular acid-triggered drug release properties, Colloids and Surfaces B: Biointerfaces, 2015, 136, P. 37-45.
  20. Li, S., et al., Targeted imaging of brain gliomas using multifunctional Fe3O4/MnO nanoparticles, RSC Adv., 2015, 5, 33639-33645.
  21. Chen, W., et al., Assembly of Fe3O4 nanoparticles on PEG-functionalized graphene oxide for efficient magnetic imaging and drug delivery, RSC Adv., 2015, 5, 69307-69311.
  22. Rubio, N., et al., Solvent-Free Click-Mechanochemistry for the Preparation of Cancer Cell Targeting Graphene Oxide, ACS Applied Materials & Interfaces, 2015, 7 (34), 18920-18923.
  23. Chen, H., et al., A graphene quantum dot-based FRET system for nuclear-targeted and real-time monitoring of drug delivery, Nanoscale, 2015, 7, 15477-15486.
  24. El-Gogary, R.I., et al., Polyethylene Glycol Conjugated Polymeric Nanocapsules for Targeted Delivery of Quercetin to Folate-Expressing Cancer Cells in Vitro and in Vivo. ACS Nano, 2014, 8(2): p. 1384-1401.
  25. Amoozgar, Z., et al., Dual-layer surface coating of PLGA-based nanoparticles provides slow-release drug delivery to achieve metronomic therapy in a paclitaxel-resistant murine ovarian cancer model, Biomacromolecules, 2014, 15(11):4187-94.
  26. Feng, T., et al., PEGylated poly(aspartate-g-OEI) copolymers for effective and prolonged gene transfection, J. Mater. Chem. B, 2014, 2, 2725-2732.
  27. Browning, M.B., et al., Endothelial Cell Response to Chemical, Biological, and Physical Cues in Bioactive Hydrogels, Tissue Engineering Part A, 2014, 20(23-24): 3130-3141.
  28. Zhang, M., Graphene Oxide Based Theranostic Platform for T1-Weighted Magnetic Resonance Imaging and Drug Delivery, ACS Appl. Mater. Interfaces, 2013, 5(24), pp 13325–13332.
  29. Das, M., et al., Intranuclear Drug Delivery and Effective in Vivo Cancer Therapy via Estradiol–PEG-Appended Multiwalled Carbon Nanotubes, Mol. Pharmaceutics, 2013, 10 (9), pp 3404–3416.
  30. Zhou, J., et al., In vivo evaluation of medical device-associated inflammation using a macrophage-specific positron emission tomography (PET) imaging probe. Bioorganic & Medicinal Chemistry Letters, 2013, 23(7): p. 2044-2047.
  31. Browning, M.B., Bioactive Hydrogels with Enhanced Initial and Sustained Cell Interactions, Biomacromolecules, 2013, 14(7) p: 2225–2233.
  32. Bagaria, H.G., et al., Adsorption of iron oxide nanoclusters stabilized with sulfonated copolymers on silica in concentrated NaCl and CaCl 2 brine, Journal of colloid and interface science, 2013, 398: 217-226.
  33. Zhang, T., et al., In vivo photoacoustic imaging of breast cancer tumor with HER2-targeted nanodiamonds, SPIE NanoScience+ Engineering,  International Society for Optics and Photonics, 2013, pp. 881504-881504.


XML 地图 | Sitemap 地图